Indian Forum for Water Adroit

Estimating anisotropic heterogeneous hydraulic conductivity and dispersivity in a layered coastal aq

Subir Paul

  • *****
  • Thanked: 53 times
  • +9/-0
    • View Profile
  • Institute : Indian Institute of Science, Bangalore
  • Programming language : Matlab, R
The work is carried out by B.N.Priyanka along with Prof. M.S. Mohan Kumar titled "Estimating anisotropic heterogeneous hydraulic conductivity and dispersivity in a layered coastal aquifer of dakshina kannada district, karnataka" is recently published in the Journal of Hydrology.

Abstract: The solution for the inverse problem of seawater intrusion at an aquifer scale has not been studied as extensively as forward modeling, because of the conceptual and computational difficulties involved. A three-dimensional variable-density conceptual phreatic model is developed by constraining with real-field data such as layering, aquifer bottom topography and appropriate initial conditions. The initial aquifer parameters are layered heterogeneous and spatially homogeneous that are based on discrete field measurements. The developed conceptual model shows poor correlation with observed state variables (hydraulic head and solute concentration), signifying the importance of spatial heterogeneity in hydraulic conductivity and dispersivity of all the layers. The conceptual model is inverted to estimate the anisotropic spatially varying hydraulic conductivity and the longitudinal dispersivity at the pilot points by minimizing the least square error of state variables across the observation wells. The inverse calibrated model is validated for the hydraulic head at validation wells and the solute concentration is validated with equivalent solute concentration derived from the electrical resistivity, which shows good results against the field measurements. The verification of estimated anisotropic hydraulic conductivity with the electrical resistivity tomography image shows good agreement. This investigation gives an insight about constraining the highly parameterized inverse model with real-field data to estimate spatially varying aquifer parameters for an effective simulation of the seawater intrusion in a layered coastal aquifer.

https://www.sciencedirect.com/science/article/pii/S0022169418306280#!
Subir Paul
Research Scholar (PhD)
WR&EE (CE)
IISc Bengaluru
 
The following users thanked this post: B N Priyanka

B N Priyanka

  • ***
  • Thanked: 4 times
  • +100/-0
    • View Profile
The work is carried out by B.N.Priyanka along with Prof. M.S. Mohan Kumar titled "Estimating anisotropic heterogeneous hydraulic conductivity and dispersivity in a layered coastal aquifer of Dakshina Kannada district, karnataka" is recently published in the Journal of Hydrology.

Abstract: The solution for the inverse problem of seawater intrusion at an aquifer scale has not been studied as extensively as forward modeling, because of the conceptual and computational difficulties involved. A three-dimensional variable-density conceptual phreatic model is developed by constraining with real-field data such as layering, aquifer bottom topography and appropriate initial conditions. The initial aquifer parameters are layered heterogeneous and spatially homogeneous that are based on discrete field measurements. The developed conceptual model shows poor correlation with observed state variables (hydraulic head and solute concentration), signifying the importance of spatial heterogeneity in hydraulic conductivity and dispersivity of all the layers. The conceptual model is inverted to estimate the anisotropic spatially varying hydraulic conductivity and the longitudinal dispersivity at the pilot points by minimizing the least square error of state variables across the observation wells. The inverse calibrated model is validated for the hydraulic head at validation wells and the solute concentration is validated with equivalent solute concentration derived from the electrical resistivity, which shows good results against the field measurements. The verification of estimated anisotropic hydraulic conductivity with the electrical resistivity tomography image shows good agreement. This investigation gives an insight about constraining the highly parameterized inverse model with real-field data to estimate spatially varying aquifer parameters for an effective simulation of the seawater intrusion in a layered coastal aquifer.

https://www.sciencedirect.com/science/article/pii/S0022169418306280#!

Find the link to access the full-length paper of this work. This link needs no sign-up, registration or fees. Anyone clicking on this link before 12 October 2018, will be taken directly to the final version.

https://authors.elsevier.com/a/1Xc7h52cuJPBe
Regards,
B N Priyanka
Research Scholar
Department of Civil Engineering
Indian Institute of Science, Bangalore.