Author Topic: Development of a global 30-m impervious surface map  (Read 158 times)

Pankaj Dey

  • Moderator
  • Team sea
  • *****
  • Karma: +113/-0
    • View Profile
  • Institute : Indian Institute of Science
  • Programming language : MATLAB, R
Development of a global 30-m impervious surface map
« on: January 21, 2020, 02:58:23 PM »
The amount of impervious surface is an important indicator in the monitoring of the intensity of human activity and environmental change. The use of remote sensing techniques is the only means of accurately carrying out global mapping of impervious surfaces covering large areas. Optical imagery can capture surface reflectance characteristics, while synthetic aperture radar (SAR) images can be used to provide information on the structure and dielectric properties of surface materials. In addition, night-time light (NTL) imagery can detect the intensity of human activity and thus provide important a priori probabilities of the occurrence of impervious surfaces. In this study, we aimed to generate an accurate global impervious surface map at a resolution of 30-m for 2015 by combining Landsat-8 OLI optical images, Sentinel-1 SAR images and VIIRS NTL images based on the Google Earth Engine (GEE) platform. First, the global impervious and non-impervious training samples were automatically derived by combining the GlobeLand30 land-cover product with VIIRS NTL and MODIS enhanced vegetation index (EVI) imagery. Then, based on global training samples and multi-source and multi-temporal imagery, a random forest classifier was trained and used to generate corresponding impervious surface maps for each 5°×5° cell of a geographical grid. Finally, a global impervious surface map, produced by mosaicking numerous 5°×5° regional maps, was validated by interpretation samples and then compared with three existing impervious products (GlobeLand30, FROM_GLC and NUACI). The results indicated that the global impervious surface map produced using the proposed multi-source, multi-temporal random forest classification (MSMT_RF) method was the most accurate of the maps, having an overall accuracy of 96.6 % and kappa coefficient of 0.903 as against 92.5 % and 0.769 for FROM_GLC, 91.1 % and 0.717 for GlobeLand30, and 87.43 % and 0.585 for NUACI. Therefore, it is concluded that a global 30-m impervious surface map can accurately and efficiently be generated by the proposed MSMT_RF method based on the GEE platform. The global impervious surface map generated in this paper are available at (Zhang et al., 2019).